DR. ANTON MALEVICH

Aufgabe 7.1 Finden Sie die Ableitung von

a)
$$\sqrt{x+1} \cdot \ln x$$
,

e)
$$\arctan \sqrt{x}$$
,

h)
$$\frac{x}{x^2 + 1}$$
,

b)
$$x \cdot \ln(\sin x)$$
,

f)
$$e^{1+\sqrt{x}}$$
.

c)
$$x^2e^{-x}$$
,

d)
$$\tan(2x - 4)$$
,

g)
$$\frac{x}{x+1}$$
,

i)
$$\frac{\ln x}{\sin x}$$
.

Aufgabe 7.2 Berechnen Sie die ersten und die zweiten Ableitungen

a)
$$x^2 \cos 2x$$
,

b)
$$\tan x$$
,

c)
$$\arctan x$$
,

d)
$$\frac{\sin x}{x}$$
,

e) $\sin^2 x$.

Aufgabe 7.3 Finden Sie die Vorschrift für $f^{(n)}(x)$ und berechnen Sie $f^{(10)}(x)$:

a)
$$\frac{1}{1+x}$$
,

b)
$$xe^{-x}$$
,

c)
$$x^{10}$$
.

Aufgabe 7.4 Bestimmen Sie die Intervalle der Monotonie und skizzieren Sie

a)
$$x^3 + x$$
,

b)
$$\arctan x^2$$
.

Aufgabe 7.5 Bestimmen Sie alle lokale Extrema (mit Extrempunkten!)

a)
$$f(x) = |x - 1|$$
,

b)
$$f(x) = xe^{-x^2}$$
,

c)
$$f(x) = \sqrt[3]{(x-1)(x-2)^2}$$
.

Aufgabe 7.6 Finden Sie das Maximum und das Minimum der Funktion f auf dem Intervall I.

a)
$$f(x) = \ln \cos x$$
, $I = (-\frac{\pi}{2}, \frac{\pi}{2})$,

b)
$$f(x) = (x-5)e^x$$
, $I = [-5, 5]$,

c)
$$f(x) = (x-3)^2 e^{|x|}$$
, $I = [-1, 4]$,

d)
$$f(x) = \begin{cases} -x^2, & x \le 0 \\ 2ex \ln x, & x > 0 \end{cases}$$
, $I = [-1, 2]$.

 $\mathbf{Aufgabe}^{\#}$ 7.7 Untersuchen Sie auf lokale Extrema, bestimmen Sie den minimalen und den maximalen Wert auf [a,b]:

a)
$$f(x) = (x-3)^2 e^{|x|}$$
, $[a,b] = [-1,4]$,

b)
$$f(x) = \begin{cases} -x^2, & x \le 0 \\ 2ex \ln x, & x > 0 \end{cases}$$
, $[a, b] = [-1, 2]$.

 $\mathbf{Aufgabe}^{\#}$ 7.8 Für welche x sind die Funktionen definiert, aber nicht differenzierbar? (Machen Sie auch eine Skizze.)

a)
$$|x-1|$$
, b) $|\ln(x-1)|$, c) $\sin |x|$, d) $\ln(1+\sqrt{x})$, e) $|x^2-1|$, f) $e^{|x|}$, g) $|\sin x|$.